42 research outputs found

    The complexity of linear-time temporal logic over the class of ordinals

    Full text link
    We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability problem over the class of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC

    Complexity of checking whether two automata are synchronized by the same language

    Full text link
    A deterministic finite automaton is said to be synchronizing if it has a reset word, i.e. a word that brings all states of the automaton to a particular one. We prove that it is a PSPACE-complete problem to check whether the language of reset words for a given automaton coincides with the language of reset words for some particular automaton.Comment: 12 pages, 4 figure

    Reconfiguration of list edge-colorings in a graph

    Get PDF
    11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. ProceedingsWe study the problem of reconfiguring one list edge-coloring of a graph into another list edge-coloring by changing one edge color at a time, while at all times maintaining a list edge-coloring, given a list of allowed colors for each edge. First we show that this problem is PSPACE-complete, even for planar graphs of maximum degree 3 and just six colors. Then we consider the problem restricted to trees. We show that any list edge-coloring can be transformed into any other under the sufficient condition that the number of allowed colors for each edge is strictly larger than the degrees of both its endpoints. This sufficient condition is best possible in some sense. Our proof yields a polynomial-time algorithm that finds a transformation between two given list edge-colorings of a tree with n vertices using O(n [superscript 2]) recolor steps. This worst-case bound is tight: we give an infinite family of instances on paths that satisfy our sufficient condition and whose reconfiguration requires Ω(n [superscript 2]) recolor steps

    Computing with and without arbitrary large numbers

    Full text link
    In the study of random access machines (RAMs) it has been shown that the availability of an extra input integer, having no special properties other than being sufficiently large, is enough to reduce the computational complexity of some problems. However, this has only been shown so far for specific problems. We provide a characterization of the power of such extra inputs for general problems. To do so, we first correct a classical result by Simon and Szegedy (1992) as well as one by Simon (1981). In the former we show mistakes in the proof and correct these by an entirely new construction, with no great change to the results. In the latter, the original proof direction stands with only minor modifications, but the new results are far stronger than those of Simon (1981). In both cases, the new constructions provide the theoretical tools required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended abstract. The full paper was presented at TAMC 2013. (Reference given is for the paper version, as it appears in the proceedings.

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Derandomized Squaring of Graphs

    Full text link
    We introduce a “derandomized ” analogue of graph squaring. This op-eration increases the connectivity of the graph (as measured by the second eigenvalue) almost as well as squaring the graph does, yet only increases the degree of the graph by a constant factor, instead of squaring the degree. One application of this product is an alternative proof of Reingold’s re-cent breakthrough result that S-T Connectivity in Undirected Graphs can be solved in deterministic logspace.

    Extended Computation Tree Logic

    Full text link
    We introduce a generic extension of the popular branching-time logic CTL which refines the temporal until and release operators with formal languages. For instance, a language may determine the moments along a path that an until property may be fulfilled. We consider several classes of languages leading to logics with different expressive power and complexity, whose importance is motivated by their use in model checking, synthesis, abstract interpretation, etc. We show that even with context-free languages on the until operator the logic still allows for polynomial time model-checking despite the significant increase in expressive power. This makes the logic a promising candidate for applications in verification. In addition, we analyse the complexity of satisfiability and compare the expressive power of these logics to CTL* and extensions of PDL

    Assume-Guarantee Synthesis for Concurrent Reactive Programs with Partial Information

    Get PDF
    Synthesis of program parts is very useful for concurrent systems. However, most synthesis approaches do not support common design tasks, like modifying a single process without having to re-synthesize or verify the whole system. Assume-guarantee synthesis (AGS) provides robustness against modifications of system parts, but thus far has been limited to the perfect information setting. This means that local variables cannot be hidden from other processes, which renders synthesis results cumbersome or even impossible to realize. We resolve this shortcoming by defining AGS in a partial information setting. We analyze the complexity and decidability in different settings, showing that the problem has a high worst-case complexity and is undecidable in many interesting cases. Based on these observations, we present a pragmatic algorithm based on bounded synthesis, and demonstrate its practical applicability on several examples
    corecore